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Nonlinear dynamical model of human gait
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We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The
stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal
nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait.
Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. Human
locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The
central nervous system is coupled to the motocontrol system, and together they control the locomotion of the
gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external
force associated with the conscious act of walking in a particular way.
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I. INTRODUCTION

Walking is a complex process which we have only
cently begun to understand through the application of n
linear data processing techniques@1–4# to study interval
data. It has been known for over a century that there
variation of 3–4 % in the stride interval of humans duri
walking @5#, and only in the last decade did Hausdorffet al.
@1# demonstrate that the stride-interval time series exhi
long-time correlation, suggesting that the phenomenon
walking is a self-similar, fractal activity. Subsequent stud
by West and Griffin@3,4# supported the conclusion that th
human gait time series is fractal. However, more recentl
was determined that these time series, rather than b
monofractal, are weakly multifractal@6,7#. In particular, in
Ref. @7# the interested reader will find a detailed fractal a
multifractal analyses of the stride-interval datasets that h
we try to model.

Human locomotion is known to be a voluntary proce
but it is also regulated through a network of neurons calle
central pattern generator~CPG! @8#, capable of producing a
syncopated output. The early nonlinear dynamical model
CPGs for gait assumed that a single nonlinear oscillator
used for each limb participating in the locomotion proce
@9#. Therefore a quadruped requires the coupling of four n
linear oscillators to determine the correct phase relati
among the four legs in order to distinguish between vari
modes of locomotion, that is, walking, trotting, canterin
and galloping. More recent dynamical models, using
property of synchronization of nonlinear dynamical system
allow for neurons within an assembly to become enslave
a single rhythmic muscular activity. Thus, rather than hav
a separate nonlinear oscillator for each limb, it is possible
have a single CPG to determine how we walk.

The model that we present here, the super CPG~SCPG!,
assumes that the central nervous system is coupled to
motocontrol system, and together they control the locom
tion of the gait cycle. We stress that it is the period of the g
cycle that is ultimately measured in these stride-interval
periments, and not the neural firing activity. The dynamics
1063-651X/2003/67~5!/051917~10!/$20.00 67 0519
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human gate may also be voluntarily forced, for example,
following the frequency of a metronome. We model the co
plex gait system by assuming that the amplitude of the
pulses of the correlated firing neural centers regulates o
the unperturbed inner frequency of a nonlinear forced V
der Pol oscillator@10# that mimics the gait cycle. The strid
interval is assumed to coincide with the actual period of
Van der Pol oscillator. In this way the gait frequency m
differ slightly from the potential frequency induced by th
neural firing activity. In fact, the chaotic behavior of nonlin
ear oscillators, such as the Van der Pol oscillator, allow
more complex behavior that may be controlled also by
constraint that forces the oscillator to follow a particul
fixed frequency.

The SCPG model is tested on a dataset available in R
@11#. These data were originally collected and used by Ha
dorff et al. @12# to determine the dependence of the frac
dimension of the time series on changes of the average
of walking. These data contain the stride-interval time ser
for ten healthy young men walking at a slow, normal, a
fast pace, for a period of 1 h. The same individuals are t
requested to walk at a pace determined by a metronome
at the average slow, normal, and fast paces for 30 min
generate a second dataset.

The fractal and multifractal analyses of the data are d
by studying the estimated distribution of the local Ho¨lder
exponents using wavelet transforms. The interested re
will find a detailed discussion about the analysis method
particular, in Ref.@13#, and in Refs.@14–16#. In Ref. @7# we
also discuss this method in detail. To better understand
meaning of the Ho¨lder exponenth, we recall that the relation
between the Ho¨lder and Hurst exponentH @17# in the con-
tinuum limit of a monofractal noise ish5H21 according to
the notation adopted in Refs.@7,13#. According to this defi-
nition, the autocorrelation function@18# of a fractal noise
$j i% is related to the Ho¨lder exponenth via the relation

C~r !5
^j ij i 1r&

^j i
2&

}r 2H225r 2h, ~1!
©2003 The American Physical Society17-1
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or, equivalently, in the power spectrum representation

S~ f !5E
2`

`

C~r !e2 i2p f rdr} f 122H5 f 2122h. ~2!

Consequently,h50 corresponds to pink or 1/f noise,21
,h,20.5 corresponds to antipersistent noise,h520.5
corresponds to uncorrelated Gaussian noise,20.5,h,0
corresponds to correlated noise,h50.5 corresponds to
Brownian motion, andh51 corresponds to black noise@26#.

By estimating the Ho¨lder exponents and their spectra u
ing a wavelet transform@13#, we have shown@7# that the
stride-interval time series is weakly multifractal with a ma
fractality close to that of 1/f noise. The time series is some
times nonstationary and its fractal variability changes in
different gait mode regimes@7#. In particular, the persistenc
as well as the multifractality of the stride-interval time ser
tend to increase for both slow and fast paces, above tha
the normal paces. Moreover, if the pace is constrained b
metronome, the stochastic properties of the stride-inte
time series change significantly, from persistent to antiper
tent fluctuations, but, in general, in each case there is a
duction in the long-term memory and an increase in rando
ness.

In Sec. II, we give a short introduction to the phenomen
of locomotion, the traditional methods for modeling usi
the CPG, and review the data processing used to establis
fractal behavior of the stride-interval time series. Section
reviews the stochastic properties of the normal and me
nomic gaits under different various pace velocities, slo
normal, and fast. In Sec. IV, we present the mathemat
details of the SCPG model. In Sec. V, we compare the res
of computation using the SCPG model with the phenome
logical data. Finally, in Sec. VI we draw some conclusion

II. CENTRAL PATTERN GENERATOR
AND LOCOMOTION

Walking consists of a sequence of steps. These steps
be partitioned into two phases: a stance phase and a s
phase. The stance phase is initiated when a foot strikes
ground and ends when it is lifted. The swing phase is in
ated when the foot is lifted and ends when it strikes
ground again. The time to complete each phase varies
the stepping speed. A stride-interval is the length of ti
from the start of one stance phase to the start of the n
stance phase.

Traditionally, the legged locomotion of animals is unde
stood through the use of a CPG, an intraspinal network
neurons capable of producing a syncopated output@8,19#.
The implicit assumption in such an interpretation is tha
given limb moves in direct proportion to the voltage gen
ated in a specific part of the CPG. Experiments establish
the existence of a CPG have been done on animals
spinal cord transections. Walking, for example, in a mes
cephalic cat, a cat with its brain stem sectioned rostral to
superior colliculus, is very close to normal, on a flat, ho
zontal surface, when a section of the midbrain is electrica
stimulated. Stepping continues as long as a train of electr
05191
e

of
a

al
s-
e-
-

n

the
I
o-
,
al
lts
-

.

ay
ing
he
-
e
ith
e
xt

-
f

a
-
g
th
-
e

-
y
al

pulses is used to drive the stepping. This is not a sim
linear response process because changing the frequen
the driver has little effect of the walking cycle@20#. How-
ever, since the frequency of the stepping increases in pro
tion to the amplitude of the stimulation, we can conclude t
the variation in the stride-interval of humans is related to
fluctuation of the amplitude of the impulses of the firin
neural centers.

As Collins and Richmond@8# point out, in spite of the
studies establishing the existence of a CPG in the cen
nervous system of quadrupeds, such direct evidence doe
exist for a vertebrate CPG for biped locomotion. Cons
quently, these and other authors have turned to the cons
tion of models, based on the coupling of nonlinear oscil
tors, thehard-wiredCPG, to establish that the mathematic
models are sufficiently robust to mimic the locomotion ch
acteristics observed in the movements of segmented bip
@21#, as well as in quadrupeds with the opportune symme
properties@9,22#. These characteristics, such as the switch
among multiple gait patterns, are shown to neither depend
the detailed dynamics of the constituent nonlinear oscillat
nor on their interoscillator coupling strengths@8#.

As we mentioned in the Introduction, it has been know
for over a century that there is a variation in the strid
interval of humans during walking of'3 –4 % @5#. This
random variability has been shown@1,3,4,6,12# to exhibit
long-time correlations, and suggested that the phenome
of walking is a self-similar, fractal, activity. The existence
fractal time series better suggests that the nonlinear osc
tors needed to model locomotion operate in the unstable,
is, in the chaotic regime.

A stochastic version of a CPG was developed by Ha
dorff et al. @6,12# to capture the fractal properties of th
interstride-interval time series. This stochastic model w
later extended by Ashkenazy and co-workers@23,24# to de-
scribe the changing of gait dynamics as we develop fr
childhood to adulthood. The model is essentially a rand
walk on a correlated chain, where each node of the chain
neural center of the kind discussed above, and with a dif
ent frequency. This random walk is found to generate a fr
tal process, with a multifractal width that depends parame
cally on the range of the random walker’s step siz
Ashkenazy and co-workers@23,24# focused on explaining
the changes in the gait time series during maturation, us
their stochastic CPG model.

Herein we extend the previous models by assuming
gait dynamics are regulated by a stochastic correlated C
similar to that of Ashkenazy and co-workers@23,24#, coupled
to the nonlinear oscillators needed to model locomotion
the unstable, forced, and chaotic regimes. We show that
parameters, the average frequencyf 0 and the intensityA of
the forcing component of the nonlinear oscillator, are su
cient to determine both the fractal and multifractal variab
ties of human gait under normal, stressed, and metrono
conditions, using the SCPG model.

III. HUMAN GAIT ANALYSIS

In this section, we summarize the main fractal and mu
fractal characteristics of the stride-interval of the human g
7-2
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data that we discussed in detail elsewhere@7#. More details
regarding the collection of data can be found in Ref.@11#
from where we downloaded the data and in Refs.@7,12#.

The downloaded datasets analyzed in Ref.@7# consist of
the gait time series of ten persons in the three different c
ditions of slow, normal, and fast walking. Each time series
'1-h long for unconstrained walking for slow, fast, and no
mal walking, see, for example, Fig. 1. Similarly, each tim
series is '30-min long for metronomically constraine
walking for slow, fast, and normal walking, see, for examp
Fig. 2. Participants in the study had no history of any neu
muscular, respiratory, or cardiovascular disorders. They w
not taking any medications and had a mean age of 21.
~range: 18–29 yr!; mean height 1.7760.08 m and mean
weight 71.8610.7 kg. All subjects provided informed writ
ten consent. Subjects walked continuously on level gro
around an obstacle-free, long~either 225 or 400 m!, approxi-
mately oval path and the stride-interval was measured u
ultrathin, force sensitive switches taped inside one shoe.
the metronomic constrained walking, the individuals we
told only once, at the beginning of their walk, to synchron
their steps with the metronome.

In Ref. @13#, Struzik introduces a method to estimate t
local Hölder exponents of a time series. This author sho

FIG. 1. Stride interval for slow, normal, and fast gaits. T
period of time over which measurements were done is appr
mately 1 h.

FIG. 2. Stride intervals for slow, normal, and fast gaits f
metronomic-triggered walking. The total period of time
'30 min.
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that the fractal properties of a dataset can be studied by
termining the mean valueh̄ of the distribution of the Ho¨lder
exponents. The details of the method can be found in R
@7,13#. Moreover, Struzik also shows that a monofractal tim
series of finite length presets a nonzero width of the dis
bution of the Ho¨lder exponents. Therefore, the existence
such a nonzero width can be a source of confusion betwe
monofractal time series of finite length and a truly multifra
tal time series. A multifractal time series can be distinguish
from a monofractal time series of the same length only if
width of its Hölder-exponent distribution is significantl
larger than that of a corresponding monofractal time se
with the Hurst exponentH5h̄11. To address this problem
in Ref. @7# we suggest that given a dataset of lengthN, its
distribution of the Ho¨lder exponents estimated by usin
Struzik’s algorithm can be approximately fitted by a Gau
ian distribution of the type

g~h!5
1

A2ps
expF2

~h2h0!2

2 s2 G , ~3!

where the valueh0 is a good approximation toh̄. Usually,h0

is slightly larger thanh̄ because the distribution of th
Hölder exponents presents a slightly positive skewness.
standard deviations is considered a good indicator of th
width of the distribution. Then, we generate many artific
datasets of fractal noise of finite lengthN characterized by a
Hurst coefficientH5h̄11 and study the distribution of the
monofractal widthssF by using a fit with Eq.~3!. Finally, if
s is larger thansF and this is statistically significant, we
conclude that the original time series is multifractal.

By applying the above method@7# we determined that
typical distributions of the Ho¨lder exponents, for uncon
strained walking of a single individual, are of the type d
picted in Fig. 3. Figure 4 shows the average distributions
the Hölder exponents for the cohort of ten walkers. Figure
and 4 show that stride-interval time series for human gait
characterized by strong persistent fractal properties v
close to that of the 1/f noise,h'0. However, normal gait is

i-

FIG. 3. Histogram and probability density estimation of t
Hölder exponents: slow~star! (h050.105,s50.060), normal~tri-
angle! (h0520.125, s50.063), and fast~circle! (h0520.012,
s50.056) gaits for a single individual. The fitting curves a
Gaussian functions with averageh0 and standard deviations.
7-3
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usually slightly less persistent than both slow and fast ga
The slow gait has the most persistent fluctuations and m
present nonstationary properties,h.0. The slow gait fluc-
tuations may also deviate most strongly from person to p
son. The higher values of the Ho¨lder exponents for both slow
and fast gaits, relative to normal gait, may be explained
due to a stress condition that increases the persistency
therefore, the long-time correlation of the fluctuations. Mo
over, the regular curves of Fig. 4 show that unconstrai
walking is characterized by fractal properties that do
change substantially from one individual to another. Fina
a careful comparison of the widths of the distributions of t
Hölder exponents for the different gaits with the widths fo
corresponding monofractal noise dataset of the same le
has proven that the stride-interval of human gait is o
weakly multifractal@7#. However, the multifractal structur
is slightly more prominent for fast and slow gaits than f
normal gait.

Figure 5 shows typical distributions of the Ho¨lder expo-
nents for metronome-constrained walking@7#, which is little
different from the histograms in Fig. 3. Figure 6 shows t
average distributions of the Ho¨lder exponents for all ten
walkers. The figures clearly indicates that under the c
straint of a metronome, the stride-interval of human gait
comes more random and the strong long-time persistenc
the 1/f noise is lost for some individuals. The data presen
large variability of the Ho¨lder exponents from persistent t
antipersistent fluctuations, that is, the exponent spans the
tire range of21,h,0. However, the metronome constrai
usually has a relatively minor effect upon individuals wa
ing normally, the second peak at low Ho¨lder exponents in
Fig. 6 being attributable to a single person, who has d
culty with the external cadence. Probably, by walking a
normal speed an individual is more relaxed and he or
walks more naturally. The fast gait appears to be almos

FIG. 4. Histogram and probability density estimation of t
Hölder exponents for the three walking groups are shown: s
~star!, normal ~triangle!, and fast~circle! gaits. Each curve is an
average over the ten cohorts in the experiment. By changing
gate mode from slow to normal, the Holder exponentsh decrease
but from normal to fast they increase. There is also an increas
the width of the distributions by moving from the normal to the
slow or fast gaits mode. The fitting curves are Gaussian functio
slow ~star! (h050.046, s50.102), normal ~triangle! (h0

520.092, s50.069), and fast~circle! (h0520.035, s50.081)
gaits.
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uncorrelated noise because the distribution of the Ho¨lder ex-
ponents is centered close toh520.5 characteristic of Gauss
ian or uncorrelated random noise. Finally, the slow gait p
sents a large variability from persistent to antipersist
fluctuations.

We notice that some individuals may be unable to walk
a given cadence and their attempts to synchronize the p
result in a continual shifting of the stride-interval longer a
shorter in the vicinity of an average. For these individuals
phasing is never right and this gives rise to a strong antip
sistent signal for all three gait velocities.

In summary, the stride-interval of human gait present
complex behavior that depends on many factors. Walking
a strongly correlated neuronal and biomechanical phen
enon which may be strongly influenced by two differe
stress mechanisms:~a! a natural stress that increases the c
relation of the nervous system that regulates the motion
the changing of the gait regime from a normal relaxed c
dition to a consciously forced slower or faster gait regim
~b! a psychological stress due to the constraint of followin
fixed external cadence such as a metronome. The metron
causes the breaking of the long-time correlation of the na
ral pace and generates a large fractal variability of the g

w

e

of

s:

FIG. 5. Metronomic walking for a single individual. Histogram
and probability density estimation of the Ho¨lder exponents: slow
~star! (h0520.765, s50.064), normal~triangle! (h0520.204,
s50.064), and fast~circle! (h0520.436,s50.066).

FIG. 6. Metronomic walking. Histogram estimation of th
Hölder exponents for the three walking groups: slow~star!, normal
~triangle!, and fast~circle! gaits. Each curve is an average over t
ten cohorts in the experiment.
7-4
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regime. In the following section, we present a SCPG mo
that is able to reproduce these properties.

IV. THE SCPG MODEL FOR HUMAN GAIT

In this section, we introduce a model of locomotion th
governs the stride-interval time series for human gait.
anticipated in the previous sections the model has to simu
a CPG@8# capable of producing a syncopated correlated o
put associated with a motocontrol process of the gait cy
Moreover, the model incorporates two separate and dist
stress mechanisms. One stress mechanism, which has ain-
ternal origin, increases the correlation of the time series d
to the change in the velocity of the gait from normal to t
slower or faster regimes. The second stress mechanism
anexternalorigin and decreases the long-time correlation
the time series under the frequency constraint of a me
nome. We model this complex phenomenon by assuming
the intensity of the impulses of the firing neural centers re
lates only the inner virtual frequency of a forced Van der P
oscillator @10#. The observed stride-interval is assumed
coincide with the actual period of each cycle of the Van d
Pol oscillator; a period that depends on the unperturbed in
frequency of the oscillator, the amplitude of the forcing fun
tion, and the frequency of the forcing function.

Since the frequency of the stepping increases in prop
tion to the amplitude of the electric stimulation@20#, we can
assume that the time series of the intensity of the impu
fired by the neural centers is associated with a time serie
virtual frequencies$ f j%. So, in the spirit of the model sug
gested by Ashkenazy and co-workers@23,24#, we assume
that the long-time correlated frequency of the SCPG is
scribed by a random walk on a finite-size correlated cha
where each node of the chain is a neural center of the k
discussed above, which fires an impulse with a particu
intensity that would induce a particular virtual frequenc
Ashkenazy and co-workers@23,24# focused on explaining
the multifractal changes in the gait time series during ma
ration from childhood to adulthood, assuming that neu
maturation is parametrically associated with the ranger of
the Brownian process that activates the nodes of the fin
size correlated chain of frequencies.

Here, we adopt a different approach because we are in
ested in modeling the gait for human adults operating un
different conditions. We assume that neural maturation a
therefore, the standard deviationr of the random walk pro-
cess remains constant, whereas the strength of the correl
among the neural centers increases with the change o
velocity of the gait from the normal to the slower or fast
regimes. The change of velocity is interpreted as a biolog
stress. Moreover, contrary to Ashkenazy and co-work
@23,24# we do not add any noise to the output of each node
mimic biological noise. The final output given by the actu
frequencies of the gait cycle fluctuates due to the cha
solutions of the nonlinear oscillators in the SCPG, here t
being the forced Van der Pol oscillator. The advantage
using chaos in the model, rather than noise, is that chao
an intrinsic property of the SCPG dynamics and theref
introduces variability in a controllable way.
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We observe that nonlinear oscillators may present cha
regimes and may be forced by an external frequency@10#, so
they may be useful in describing not only the change
phase from the walk, trot, canter, and gallop of the quad
peds, but also the variability of the stride intervals observ
in humans. In bipeds it is possible to mimic the moveme
of the two legs with two nonlinear coupled oscillators. How
ever, because the geometry of the bipeds’ gait, contrary
that for quadrupeds, is unique and the two legs must
shifted byp rad in phase, we can mimic the biped’s gait wi
only one nonlinear oscillator. In our model we use a we
known neuronal oscillator model, that is, the forced Van d
Pol oscillator@8,10# that is defined by the following equa
tion:

ẍ1m~x22p2!ẋ1~2p f j !
2x5Asin~2p f 0t !. ~4!

The parameterp controls the amplitude of the oscillations,m
controls the degree of nonlinearity of the oscillator,f j is the
inner virtual frequency of the oscillator during thej th cycle
that is related to the intensity of thej th neural fired impulse,
andA and f 0 are, respectively, the strength and the frequen
of the external driver. The frequency of the oscillator wou
be f 5 f j if A50.

We notice that the nonlinear term as well as the driv
induce the oscillator to move around a limit cycle. The act
frequency of each cycle may differ from the inner virtu
frequencyf. We assume that at the conclusion of each cyc
a new cycle is initiated with a new inner virtual frequencyf j
produced by the stochastic CPG model while all other
rameters are kept constant. However, the simulated str
interval is not 1/f j but it is given by the actual period of eac
cycle of the Van der Pol oscillator.

We assume that the neural centers of the SCPG may
impulses with different amplitudes that induce virtual fr
quencies$ f i% with finite-size correlations. Here, therefor
we model directly the time series of virtual frequencies. T
virtual frequencies$ f i% are centered around the driver fre
quencyf 0 according to the relation

f i5 f 01gXi , ~5!

whereg is a constant andXi is a finite-size correlated vari
able, that is,

CX~r !5
^XiXi 1r&

^Xi
2&

5expF2
r

r 0
G . ~6!

The parameterr 0 measures the spatial range of the corre
tions of the neural network. The chain of frequenciesf i
5 f 01gXi is generated by a first-order autoregressive p
cess, also known as a linear Markov process@25#, which is
generated by the recursion equation

Xi5aXi 211« i , ~7!

where 0,a,1 is a constant and$« i% is a normalized zero-
centered discrete Gaussian process. It is easy to prove@25#
that the autocorrelation function of the chain$Xi% is given by
7-5
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CX~r !5
^XiXi 1r&

^Xi
2&

5ar . ~8!

A direct comparison between Eqs.~6! and ~8! gives a
5exp(21/r 0), so, we can easily generate a data seque
with the desired finite-size correlation valuer 0. Following
Ref. @23,24#, we assume that a frequency is activated by
position of a random walker given by the discrete functi
g( j ) with j 51,2, . . . , whose jump sizes follow a Gaussia
distribution of width r. The width of this distribution, ac-
cording to the interpretation of Ashkenazy and co-work
@23,24#, is associated with the human neural age maturat
This random walk mechanism allows us to obtain from
finite-time, correlated frequency series$ f i%, a new time se-
ries of frequencies$ f j% with i 5g( j ), characterized by long
time correlations, that is,

$ f i% ——→
i 5g~ j !

$ f j%. ~9!

Finally, the new sequence of frequencies$ f j% is used in Eq.
~4! recursively.

To establish the fractal properties of the SCPG model,
estimate the autocorrelation function of the new sequenc
frequencies$ f j%. We have@18#

Cf~J!5
^~ f j2 f 0!~ f j 1J2 f 0!&

^~ f j2 f 0!2&
5

^Xg( j )Xg( j 1J)&

^Xj
2&

. ~10!

It is not difficult to deduce that

Cf~J!5E
2`

`

expF2
ug2g~ j !u

r 0
GexpF2

@g2g~ j !#2

2Jr2 G
A2pJr2

dg,

~11!

where the first term of the integral is the autocorrelation
tween the positiong( j ) and a generic positiong given by Eq.
~6!, and the second term of the integral is the Gaussian
tribution of the generic positiong after J steps of a random
walker that starts from the positiong( j ). Equation~11! can
be solved, and gives

Cf~J!5expFY

2GerfcFAY

2G , ~12!

where

erfc~x!512
2

Ap
E

0

x

e2t2dt ~13!

is the complement of the error function and

Y5S r

r 0
D 2

J. ~14!

Figure 7 shows the autocorrelation function of the stocha
CPG, Eq.~12!. The variableY is given by Eq.~14!. The two
straight lines correspond to the long-range autocorrela
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function ~1! with the Hölder exponentsh520.25 andh
520.025. The figure shows that for smallY, Cf(J) is char-
acterized by a slope with the Ho¨lder exponenth'0 typical
of the pink noise and, for large value ofY, Cf(J) asymptoti-
cally converges to a long-range fractal signal withh5
20.25 and the Hurst exponentH50.75. The inverse power
law character of the correlation function would lead one
conclude that the time series is a fractal stochastic proce

We assume that normal gait is characterized by the
quency f 0,n and occurs when the individual is relaxed, a
consequently the correlations between the neuronal cen
are minimum. By implication, whether the gait increases
decreases in velocity, the correlations between the neur
centers increase. This increase in the stress is modele
using the short-time correlation parameterr 0 of the stochas-
tic CPG by assuming

r 05r 0,n@11B~ f 02 f 0,n!2#, ~15!

where r 0,n is the short-range correlation among the firin
neural centers at the normal frequency gait,f 0 is the mean
frequency, andB is a positive constant that measures t
increasing of short-range correlation at the anomalous
quency gait.

Figure 7 and Eqs.~14! and ~15! suggest that the increas
of the short-time correlation parameterr 0 leads a decrease o
Y. Because we determine the fractal exponents by fittin
fixed number of stepsJ @7#, a decrease ofY leads to a shift of
the fitting range of theJ steps toward a region where th
curve of the autocorrelation function~12! is characterized by
a higher curvature. A higher curvature of the autocorrelat
function may be detected as an increase of the multifra
properties of the signal. So, we expect that our method
analysis gives a slight increase of the Ho¨lder exponents as
well as a slight increase of the multifractal properties wh
the gait increases or decreases in velocity according to
~15!.

In summary, our model is based upon the following a
sumptions. First, we have to observe that the experime
datasets are about the stride intervals of the gait. Second
frequency of walking may be associated with a long-tim

FIG. 7. Autocorrelation function of the stochastic CPG, E
~12!. The variableY @Y5J(r/r 0)2# is given by Eq.~14!. The two
straight lines correspond to the long-range autocorrelation func
~1! with the Hölder exponentsh520.25, andh520.025 which
correspond to the Hurst exponentsH50.75 andH50.975.
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NONLINEAR DYNAMICAL MODEL OF HUMAN GAIT PHYSICAL REVIEW E 67, 051917 ~2003!
correlated neural firing activity that induces virtual pace f
quency, nevertheless, the walking is also constrained by
biomechanical motocontrol cycle that directly contro
movement and produces the pace itself. Therefore, wha
have to do is to incorporate both the neural firing activ
given by a stochastic CPG and the motocontrol constr
that is given by a nonlinear filter characterized by a lim
cycle. Therefore, we model our SCPG model such that i
based on the coupling of a stochastic with a hard-wired C
model and depends on many factors. The most impor
parameters of the model are the short-correlation sizer 0 of
Eq. ~6!, which measures the correlation between the neu
centers of the stochastic CPG, the intensityA of the forcing
driving component of the nonlinear oscillator of Eq.~4! and,
of course, the mean frequencyf 0 of the actual pace tha
distinguishes the slow, normal, and fast gait regimes. T
other parameters,g, r, m, and p may be, to a first-order
approximation, kept fixed.

While the numerical simulations are left to the followin
section, we can anticipate an interpretation of the two m
parametersr 0 and A. In fact, the short-correlation sizer 0
may be interpreted as a parameter that measures the na
correlation between the neural centers and such short-
correlation increases under particular stress, for exam
when the velocity of the gait is slower or faster than t
normal relaxed situation. The intensity of the forcing drivin
componentA may be associated with the voluntary action
trying to follow a particular cadence and is expected to
crease under a metronomic constraint.

V. SIMULATED STRIDE-INTERVAL GAIT

In this section we present and comment on our comp
simulations of the stride-interval of human gait under a
riety of conditions. For simplicity, we make use of the fo
lowing values of the parameters. The frequency of the n
mal gait is fixed at the experimentally determined value
f 0,n51/1.1 Hz, so that the average period of the normal g
is 1.1 s; the frequency of the slow and fast gaits are, res
tively, f 0,s51/1.45 Hz andf 0,f51/0.95 Hz, with an average
period of 1.45 and 0.95 s, respectively, which is similar
experimentally realized slow and fast human gaits shown
Fig. 1.

Also the hopping-range parameter is chosen equal to
for adults @23,24#, that is,r525 and kept constant. More
over, we choser 0,n525 such that forf 05 f 0,n we haver 0
525 that coincides with the corresponding value found
Ref. @23#. To generate an artificial sequence with a variabil
compatible to that of the experimental sequence, we ch
B550 in Eq. ~15! and, in Eq.~5!, g50.02, that is, a value
compatible to the average of the standard deviation of all
data analyzed by us@7#, however, the value ofg may be
smaller and may decrease with an increase in the freque
f 0 and/or an increase in the intensity of the forcing amplitu
A of Eq. ~4!.

So, we choose a frequencyf 0, calculater 0 via Eq. ~15!
and the Markovian parametera, then we generate a chain o
frequencies$ f i% via Eqs.~5! and ~7!. Finally, by using the
random walk process to activate a particular frequency of
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short-time correlated frequency neural chain, we obtain
time series of the frequencies$ f j% to use in the time evolu-
tion of the Van der Pol oscillator. For simplicity, we kee
constant the two parameters of the nonlinear componen
oscillator~4!, m51 andp51. The only parameters allowe
to change in the model are the mean frequencyf 0 that
changes also the value ofr 0 via Eq.~15!, and the intensityA
of the driver of the Van der Pol oscillator~4!.

Figure 8 shows the stride-interval time series for slo
normal, and fast computer-simulated gaits using the SC
For the simulation of the normal gait we useA51 and for
both slower and faster gaits, we useA52. We assume tha
the amplitudeA of the driver of the Van der Pol oscillator~4!
should be smaller for the normal gait than that for either
slower or faster gaits, because in our interpretationA mea-
sures the magnitude of the constraint to walk at a particu
velocity. The amplitudeA is smaller for the normal gait be
cause the normal gait is the most relaxed, spontaneous,
consequently the most automatic of the three gaits. The
ure shows that the SCPG model is able to reproduce a r
istic persistence and volatility for the three gaits by simp
changing the frequency of the gait itself. In particular, no
the high volatility of the slow gait that is remarkably simila
to that seen in Fig. 1.

Figure 9 shows the stride-interval time series for slo
normal, and fast metronome-triggered computer-simula
gaits. We use the same frequency series generated by

FIG. 8. Stride-interval time series for slow, normal, and fa
computer-simulated gaits.

FIG. 9. Stride-interval time series for slow, normal, and fa
gaits for metronome-triggered computer-simulated gait.
7-7
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B. J. WEST AND N. SCAFETTA PHYSICAL REVIEW E67, 051917 ~2003!
SCPG used to produce the sequences of Fig. 8. We
change the intensityA of the driver of the Van der Pol oscil
lator ~4!. We use for the normal gaitA54 and for both
slower and faster gaitsA58. Again we suppose that th
intensity A of the driver of the Van der Pol oscillator~4!
should be smaller than that for both slower and faster ga
because the normal gait is the most relaxed and spontane
By comparing Figs. 8 and 9 we note the increase in rand
ness, the loss of persistency, and the reduction in volati
all effects that are induced in the latter time series by incre
ing the value ofA and are found in the phenomenologic
data shown in Figs. 1 and 2.

Figure 10 shows histograms of distributions of the Ho¨lder
exponents for the three computer-simulated gaits show
Fig. 8. The calculations are done in the same way as th
used to produce the histograms in Fig. 3 for the experime
data, for details see Ref.@7#. The figure shows that the SCP
model is able to generate artificial stride-interval time ser
with statistical properties similar to the fractal and multifra
tal behaviors of the real data. By changing the gait mo
from slow to normal, the center of the distribution of Ho¨lder
exponenth0 decreases. In the same way by changing the
mode from normal to fast, the mean Ho¨lder exponent again
increases, just as it does for the real data. According to
SCPG model, this increase in the scaling parameter is du
the increase of the inner short-time correlation among
neuronal centers, modeled by Eq.~15! as we have explained
in the preceding section by commenting the behavior of
autocorrelation functionCf(J) shown in Fig. 7 at smallY.
Furthermore, this behavior is due to the biological stress
consciously walking at a speed that is different from t
normal spontaneous speed. In addition, the multifractality
the gait time series slightly increases for a walking rate d
ferent from normal. Here again this effect is observed in
real stride-interval data and it is proven by a slight incre
in the width of the histograms for fast and, in particular, slo
gait.

Figure 11 shows the histograms of probability density
timations of the Ho¨lder exponents for the three metronom
triggered computer-simulated gaits shown in Fig. 9. The c
culated points show that the SCPG is able to gene

FIG. 10. Histogram of probability density estimation of th
Hölder exponents for computer-simulated gait: slow~star! (h0

50.058, s50.068), normal~triangle! (h0520.093, s50.058),
and fast~circle! (h0520.015, s50.063) gaits for a single indi-
vidual.
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artificial stride-interval time series that present similar frac
and multifractal behaviors to those of real stride-interval d
taken under the constraint of a metronome. By increasing
intensityA of the driver of the Van der Pol oscillator~4!, the
randomness of the time series increases and it is possib
obtain a large variety of time series, from those having a
persistent to those with persistent fractal properties. In
SCPG, the parameterA measures the constraint of consciou
ness on the gait, and therefore the value ofA has to increase
if the walker is asked to synchronize his or her pace with
frequency of a metronome. The figure suggests that
SCPG model is able to explain a number of other proper
of the metronome-triggered walking. Figure 6 shows that
usually normal metronome-triggered gait is that with t
highest persistent fractal properties. The normal gait is a
the most natural under the constraint of the metronome a
therefore, we should expect that the normal gait is the m
automatic and the least constrained by human consciousn
This is the reason that we have chosenA54 for the normal
metronome-triggered gait. For both slower and fas
metronome-triggered gaits we have chosenA58 to indicate
a higher conscious stress that constrains gait at anoma
speeds. Moreover, by comparing Figs. 10 and 11 and con
ering that in both simulations we have used the same va
of the forcing parameterA for both slower and faster gaits
we notice that the largest fractal shift occurs for the slow
gait. This increased shift implies that the slower gait is mo
sensitive to a voluntary constraint and, so, the slower m
has the larger variability. In fact, our human experience a
the superposition of the distributions of the Ho¨lder exponents
for the ten cohorts in Fig. 6 show a large fractal variability
the slower gait. Finally, Fig. 6 reveals that few persons
characterized by a strong antipersistent pace when aske
follow a metronome. According to the SCPG model, so
people are not able to find a natural synchronization a
need to continuously adjust and readjust the speed of t
pace to match the beat of the metronome. This changin
pace implies a very strong conscious act and, therefor
very high value of the parameterA that would produce a
strong antipersistent signal.

FIG. 11. Histogram and probability density estimation of t
Hölder exponents for metronome-triggered computer-simula
gait: slow ~star! (h0520.516, s50.067), normal~triangle! (h0

520.276, s50.059), and fast~circle! (h0520.373, s50.063)
gaits for a single individual.
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NONLINEAR DYNAMICAL MODEL OF HUMAN GAIT PHYSICAL REVIEW E 67, 051917 ~2003!
VI. CONCLUSION

We have introduced a kind of the SCPG model that is a
to mimic the complexity of the stride-interval sequences
human gait under the several conditions of slow, normal,
fast regimes for both walking freely and keeping the bea
a metronome. The SCPG model is based on the assum
that human locomotion is regulated by both the central n
vous system and by a motocontrol system. A network
neurons produces a correlated syncopated output that is
related according to the level of physiological stress and
network is coupled to the motocontrol process. The com
nation of systems controls locomotion and the variability
the gait cycle. It is the period of the gait cycle that is me
sured in the datasets considered herein. Moreover, wal
may be conditioned by a voluntary act as well, for examp
walking may be consciously forced following the frequen
of a metronome. We model the complex system genera
the data by assuming that the correlated firing activity of
neural centers generated by a stochastic CPG regulates
the inner frequency of a forced Van der Pol oscillator th
mimics the motocontrol mechanism of the gait cycle. T
stride-interval is the actual period of each cycle of the forc
Van der Pol oscillator. In this way the gait frequency
slightly different from the inner frequency induced by th
neural firing activity whose impulse intensities are able
generate only a potential, but not an actual frequency.
chaotic behavior of such a nonlinear oscillator, such as
Van der Pol oscillator, and the possibility to force the fr
quency of the cycle with an external fixed frequency allo
the SCPG model to generate time series that present sim
fractal and multifractal properties to that of the human phy
ological stride-interval data in all situations here analyz
Moreover, by implementing the SCPG with four coupl
forced Van der Pol oscillators as in Ref.@8#, it should be
possible to simulate the change of phase between var
modes of quadrupeds’ locomotion, that is, walking, trottin
cantering, and galloping.
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The variety of complex behaviors is regulated by two p
rameters, the average frequencyf 0 and the amplitudeA of
the driver of the Van der Pol oscillator. The frequencyf 0
regulates the speed and may be associated with a neu
stress that increases the correlation among the neural cen
The amplitudeA may be associated with the voluntary actio
of trying to track a particular frequency and it is expected
increase under a metronome constraint. Finally, Refs.@23,24#
report that the stride-interval time series for elderly subje
and for subjects with Huntington’s diseases are more rand
than for young healthy subjects. According to the SCP
model, this may be explained by a decrease of the nor
short-range correlation among the neural centers that ma
associated with a nervous degeneration caused by injury,
ease, or aging. This decrease in correlation may be mod
throughr 0,n of Eq. ~15!. However, the decrease of correlatio
in the gait of those subjects may also be associated with
increase of the amplitudeA of the driving force of the Van
der Pol oscillator, Eq.~4!. In fact, those subjects may als
consciously choose to walk more carefully.

We emphasize that the selection of the van der Pol os
lator and of the particular stochastic CPG for the SC
model is not unique. The two properties of the model nec
sary to capture the physiological properties of the interes
the gait-interval time series are the following:~1! the dynam-
ics of the system unfolds on an attractor in phase space
~2! the natural frequency of the attractor is replaced by
random walk over a restricted set of frequencies. Property~1!
is generic for relaxation oscillators, so the same behav
would result for a family of such nonlinear oscillators. Pro
erty ~2! is also generic and leads to a multiplicative stoch
tic term in the nonlinear dynamical equation and to a mu
fractal output for the dynamical model.
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